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Abstract. The Lagrangian description of a system is analysed from a geometric viewpoint 
in order to find a concept for equivalence of singular Lagrangians generalising that of the 
regular case. Geometric and gauge equivalence of singular Lagrangians are studied and 
we also give some conditions in which second-order differential equations exist satisfying 
the dynamical equation on the final constraint submanifold. 

1. Introduction 

One of the most important problems in classical mechanics is the so-called inverse 
problem, namely, in the regular case, the determination, if possible, of a function L 
such that the Euler-Lagrange equations corresponding to such a function are the 
equations of motion. In this case a closely related point is that of the 'non-uniqueness' 
of L. More accurately, if we take into account that the set of the equations of motion 
is not so relevant as the set of its solutions, we can ask whether or not there is an 
alternative function L' whose associated equations have the same set of solutions as 
those of L, or in geometric terms, that L' defines the same vector field as L. Then L 
and L' are said to be equivalent. We recall that the existence of non-trivial alternative 
Lagrange functions lead to what have been called non-Noether constants of motion 
(see, e.g., Giandolfi et al 1981, Hojman and Harleston 1981, Carifiena and Ibort 1983). 
Another remaining point will be the study of the different quantum systems to which 
non-trivially equivalent classical systems can give rise. 

On the other hand, even though most textbooks on classical mechanics do not 
consider but regular Lagrangian systems, there is a lot of very interesting systems that 
are described by singular Lagrangians. In this case the Euler-Lagrange (EL) equations 
cannot be written in normal form because the matrix of the coefficients of the acceler- 
ations is singular and then the set of solutions of the EL equations is not well defined 
and it cannot be used for defining the equivalence of singular Lagrangians. 

As far as we know, the problem of the equivalence of singular Lagrangians has 
not been studied before, except in some papers (Kalnay and Ruggeri 1973, Tello- 
Llanos 1984), in which the more restrictive concept of gauge equivalence of Lagrangians 
was analysed in the framework of Dirac's theory of constraints. The problem of the 
equivalence of Lagrangians seems however to be worth a deeper analysis from a 
geometric point of view and this will be carried out in this paper. 
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The paper is organised as follows. In 0 2 we give a quick review of the geometrical 
setting for Lagrangian systems as an introduction of the notation and we propose a 
concept of equivalence for singular Lagrangians generalising the regular case. In 0 3 
we start by recalling some basic concepts and properties of the geometry of the tangent 
bundle which have been recently introduced by Crampin (1983) and we present three 
important lemmas which will be used in the proofs of the theorem of the next section. 
Finally, the geometrical equivalence and gauge equivalence of Lagrangians are studied 
in 0 4 and illustrated by means of some examples in § 5 .  

2. Notation and basic definition 

Let Q be a differentiable manifold which may be considered as the configuration space 
of a mechanical system and T: TQ -, Q the tangent bundle corresponding to the velocity 
phase space of the system. For any real function L E  C"( TQ),  we can define the 
Legendre transformation DL: TQ-, T*Q as follows: DL(q, U )  = ( q ,  dL,(u)), where 
L,: T,Q+ R is given by &(U) = L(q, U). The map DL can be used to pull-back to TQ 
the canonical symplectic 2-form wo defined on T*Q and we shall obtain a closed 
2-form wL = D ~ W ~ E  Z2( TQ). If the rank of wL is constant, the function L is said to 
be a Lagrangian function and if, besides this, wL is of maximal rank, L will be called 
regular Lagrangian. This happens iff D, is a local diffeomorphism and in this case 
the map, &: E??( TQ) -, A'( TQ), defined by contraction, i.e. & ( X )  = i ( X ) w ,  is an 
isomorphism of the C"( TQ)-linear structures. In natural coordinates wL is written 

dq' ~ d d  +- dq'  Adq' WL=- 
a2L 

a d  at+ a d  a$ 
and it is non-degenerate iff the Hessian matrix a2L/aui ad is regular. Moreover, in 
this case it is possible to define a locally Hamiltonian dynamical system (TQ, wL, rL)  
by i ( r L ) w L  = dE, (i.e. rL = &L1(dEL)) with E L  the energy function defined by means 
of the Liouville vector field A, EL = A( L )  - L. The dynamics is fully contained in the 
dynamical vector field rL  and the vector field T L  can be shown to be a second-order 
differential equation ( SODE) whose integral curves satisfy the Euler-Lagrange equations 
of motion. Two Lagrangians L1 and L2 are then said to be equivalent if T L ,  = Ttz .  But 
in the case of a singular Lagrangian wL is degenerate and hence the vector field rL is 
not well defined. In spite of this the equation 

&i:(dELl) = &i:(dELz) 

can still be used for defining the equivalence of both Lagrangians but with a different 
meaning for &E', that of inverse image. 

The particular case in which there exists a second-order differential equation in 
&-'(dE,) will be the most important one. 

We will say that two Lagrangian functions L, and L2 are primary-equivalent 
Lagrangians (or equivalent for short) if &L:(dELl) = &E:(dE&). The reason for the 
word 'primary' will be explained later. 

The concept of equivalence we have introduced is a generalisation of the definition 
given for regular systems and is in perfect harmony with the geometric theory developed 
by Gotay et a1 (1978, 1979) for dealing with pre-symplectic systems. In fact, they 
developed a geometric constraint algorithm for the determination of a maximal sub- 
manifold, called the final constraint submanifold, in which the dynamical equation 
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i(TL)wL = dE, has a 'consistent' solution. The algorithm gives a decreasing sequence 
of submanifolds defined by MO = TQ and for k 2 1 

M k = { m E  M k - , ) 3 U E  T,(Mk-I), such that ;L(m)U=dEL(m)}. 

The limit, which is assumed to exist, is called the final constraint submanifold C 
and is stable under the flow of any vector field satisfying the dynamical equation 
i(T)wLlc = dELlc Then, given two equivalent singular Lagrangians, the respective 
primary constraint submanifolds coincide and therefore the algorithm gives rise to the 
same final constraint submanifold too, as well as to the same possible dynamics. More 
information on the construction of the dynamics can be found in Carifiena et al(l985).  

Another relevant case is that of time-dependent systems but it will be postponed 
until we have some additional machinery available. 

3. Some results of the tangent bundle geometry 

In a recent paper Crampin (1983) has developed the geometry of the tangent bundle 
of a manifold Q for dealing with Lagrangian systems from a geometrical viewpoint. 
The fundamental tool is a canonical tensor field, of type (1 , l ) ;  instead of Crampin's 
notation S, we will use V for the vertical endomorphism of TQ. V is defined by 
V( U )  U = ( T*( U )  U)," with U E TQ, U E Tu( TQ) and where w," is the canonical lift of 
the vector w E TQ to the point U E TQ, i.e. w," = (d/dt)(u + tu ) ) ,=o .  

The expression of V in terms of natural bundle coordinates is v = a / a d O d q ' .  It 
may be used for a characterisation of second-order differential equations: a vector 
field T E %( TQ) is a SODE if and only if V(T) = A. 

Given a function L E  C"( TQ) the 2-form w L  = D f w o  can be expressed in terms of 
V as follows: w L =  -d(dLo V). In fact, it is easily seen that the 1-form dLo V is the 
PoincarC-Cartan form O L  (Godbillon 1969) obtained pulling-back the canonical 1 -form 
eo on T*Q by the Legendre transformation D,. 

The properties relating the tensor field V, also called almost tangent structure (see, 
e.g., Gotay and Nester 1979), and the pre-symplectic structure wL can be summarised 
as follows: 

Proposition 1. Let L be a Lagrangian function defined on TQ. Then 
(i) i (  V( U ) ) w ,  = - i (  U ) w L o  V for any U E %( TQ) 
(ii) i(A)w,= -dELo V.  
From both properties we see that if w L  is regular the r L  is a SODE, because 

i (  V(T,))w, = - i (TL)wLo  V = -dELo V =  i (A)wL and w L  being regular, V(T,) = A ;  
therefore Tr is a SODE. 

Now, if a is a 1-form on Q, a E A'( Q), we shall denote 6 the function 6 E C"( TQ) 
defined by $(U) = aw(u)( U). In a similar way, for any k-form p E A k (  Q), p will denote 
the basic k-form on TQ given by 4 = ~ * p .  In particular, for any function h E C"( Q), 
h' will denote the function h' = ~ * h  = h 0 T. 

We give without proof three lemmas containing standard results to be used later. 
A proof of the third can be found in a recent paper (Cariiiena and Ibort 1985). 

Lemma 1. A k-form a E Ak( TQ) is a basic form over Q, i.e. a = p for some /3 E Ak(Q) ,  
iff iva = 0 and &a = 0 for every vertical vector field. 
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In particular, if a is a closed k-form, it is enough for the first condition i,a = 0 in 
order for a to be a basic form. 

Lemma2 If ~ E A ’ ( Q ) ,  then V X E ~ ( Q )  we have X v ( 6 ) = a ( X ) .  
cv 

Lemma 3. Let r be a SODE on Q. For any h E C“(Q) we have 

2ZJ = 3. 

4. The gauge equivalence of Lagrangians 

The geometric structure associated with a Lagrangian L is given by wL. If we take 
into account that for any A E R, w ~ , + ~ ~ ~  = wL, + hw,, two Lagrangians giving the same 
2-form, that are called geometrically equivalent, will differ in a function Lo whose 
2-form wr, vanishes identically (see, e.g., Ibort 1984). The energy associated with Lo 
can however be different from zero and they would be inequivalent Lagrangians. 

Theorem 1. A function Lo E C“( TQ) is such that wr, = 0 if and only if there exists a 
closed 1-form a E Z ’ (  Q )  and a function h E C“( Q )  such that Lo = 6 + h: 
Prooj First of all we remark that if a E Z ’ (  Q )  then B,, = v*a. In fact, if (4, U )  E TQ 
and YE T ( , ” , (  TQ),  

e,( Y)I,q,,, = d 6 .  V( Y)I,,”, = d&* y,:,,, = (T* Y)(“,,”,G 
and therefore 

d 
~ a ( Y ) I ( q , ” , = ~ G ( 4 ,  U +  t(.rr* Y))l,=o= ffq(T*Cq,”,y) 

which may be written 0; = ~ * a .  Consequently w& = -dB2 = -d( ~ * a )  = 0. On the 
other hand, it is obvious that for any h E C”(Q),  d i o  V =  0, because d i o  V =  
d(a*h)o V =  dho T* V =  0. 

Conversely if wr, = 0, the 1-form Or, = dLoO V is closed. It is also invariant under 
vertical field X E f?”( TQ);  in fact for such a field T,X = 0 and thus dLo V(X) = 
dL( T , X ) ~  = 0 and from both conditions we see that 2Zxe, = i(X) deL+di(X)eL = 0. 

The results of the lemmas 1 and 2 in § 3 shows that there exists a E Z ’ ( Q )  such 
that dLoV=.rr*a=dGoV. Let now f be the difference f =  L-G. The condition 
dfo V =  0 implies that there is a function h such that f = r * h ,  which ends the proof 
of the theorem. 

As a consequence of the preceding theorem, two Lagrangians of mechanical type 
Li = fg - V, with the same kinetic energy defined by the quadratic form associated with 
a Riemannian metric, have associated with the same 2-form wL, both differing in a 
Lagrangian Lo= VI - V2. 

An equivalence relation finer than the geometrical equivalence of Lagrangians can 
also be considered: two Lagrangians L, and L2 are said to be gauge equivalent if there 
is a 1-form a E Z ’ (  Q )  such that L2 = L, + G up to a constant. In this case, if we take 
into account that A( 6 )  = & V a  E A’( Q ) ,  we see that E ,  = E L ,  and therefore two gauge 
equivalent Lagrangians are not only geometrically equivalent but equivalent, too. The 
converse property is true for regular Lagrangians (see, e.g., Abraham and Marsden 
1978) and for a more general case as explained in the following theorem (Ibort 1984). 
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Theorem 2. Let L, and L2 be two equivalent and geometrically equivalent Lagrangians. 
If there is a SODE r such that ( i(T)w)lc = dELllc  where C is the final constraint 
submanifold, in particular if L, is regular, then both Lagrangians are gauge equivalent. 

Pro06 By hypothesis the two Lagrangians are related by L2 = L,  + 6 + h' with CY E Z'(  Q ) ,  
h E C"(Q).  Let r be the SODE such that (i(T)w)lc = dEL,lc. The energies are related 
by E ,  = E L I  - h" and the relation ( i ( r ) w ) , $  = d E L ,  c( i = 1,2)  implies that r( E&) = 
r( E L , )  = 0 and henceforth r( h") = 0. But r( h )  = dh, according to lemma 3, because r 
is a SODE, and consequently h is (locally) constant and both Lagrangians will be gauge 
equivalent. 

As indicated after proposition 1, when the Lagrangian L is regular any vector field 
r E E( TQ)  satisfying the dynamical equation i (T )wL = dEL is a SODE. On the contrary, 
if L is singular the condition V(T) = A need not follow and it is not clear how strong 
the condition on the existence of a SODE r as in theorem 2 is. We give next some 
conditions in which the existence of such a SODE on the final constraint submanifold 
can be shown and we will give a few examples in the following section. 

First of all, in order to convince us of the existence of Lagrange functions for which 
there is no SODE in &;'(dEL) we analyse the singular case of a first-order Lagrangian. 
Let Q be Q =R2" and we choose a A EA'(R'") such that dA =Cl is a symplectic form 
on R2". In TQ = R4" the following Lagrange function is given: L = - T* V, with V an 
arbitrary but fixed C"-diff erentiable function on R2". A straightforward computation 
gives us that w L  = d71, i.e. w L  is written in coordinates as follows: w L  = Z (aiA, -a ,A,)  dx' A 

dx'. Consequently Ker w L  is made up by the vertical fields and if we take into account 
that EL = F= T* V, it is very easy to check that the extension F = (r, 0) to TR2" -- 
58'" xR2" of the vector field r E E( (R'") defined by r = &'(d V) satisfies the dynamical 
equation i @ ) w L  = dEL. Then &;'(dEL) = F+ V (  TQ) and there is no SODE in such a 
subset &;'(dEL). 

Theorem 3. Let L be a Lagrangian function such that Ker wL n V (  TQ) is a sub-bundle 
of T(  TQ) and 2 dim( Ker w L  n V (  T Q ) )  = dim Ker wL. Then, there exists a SODE r such 
that ( i(T)wL)Ic = dELIC, where C is the final constraint submanifold. 

Pro06 To begin with we remark that if Ker w L  n V (  TQ) = (0) the Lagrangian L is 
regular because for any U E Ker wL, the relation i( V (  U ) ) w L  = -i( U ) w L o  V shows that 
V (  U )  E Ker wL n V (  TQ) = (0) and therefore U is itself vertical and by a second applica- 
tion of the condition it too is zero. 

We have already seen that if L is regular &f'(dEL) is a SODE. If L is singular, for 
any r in 6L1(dEL), i( V ( T ) ) w L  = i(A)wL and therefore X = V(T) - A E  Ker wL. Both 
fields, V(T) and A, are vertical fields and consequently V(T) - A  E Ker wL n V (  TQ). 
Then there is a vector Y E  Ker wL such that V (  Y )  = X and r - Y is a SODE in G;'(dEL). 
The existence of such a vector field Y follows from the following. The kernel of the 
restriction of V to Ker w L  is Ker w L  n V (  TQ) and therefore there is a monomorphism 
q: Ker wL/Ker w L  n V (  TQ) + Ker wL n V( TQ) from which we can conclude that dim 
Ker w G 2 dim( Ker wL n V (  TQ). The equality sign means that V is an epimorphism 
and the existence of the vector Y follows. Finally we can only assure the existence 
of a r satisfying i ( T ) w L =  dEL on the final constraint submanifold C and therefore the 
SODE Only satisfies the dynamical equation on C. 
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5. Examples 

As our first example we are going to consider the two-dimensional system proposed 
by Kalnay and Ruggeri (1973): 

L = ;( v:  - q:)q2. 

In this system the energy is given by E L  = ;(U:+ q:)q2 and the presymplectic form 
wL by wL = q2 dq, A dvl + v ,  dq, A dq, (we assume that the straight line q2 = 0 has been 
removed from the configuration space). Then the primary constraint submanifold C 
is determined by the constraint +(ql ,  q2, v l ,  U,) = 4:- v i  = 0. The kernel of w L  is 
generated by the fields q, a /aq ,  - v l  a l a v ,  and alav,  and therefore we find the condition 
of theorem 3 and there will be a SODE in C: it is given by 

r = v1 a h l  + v2 a/aq2 - q; ' (v ,v2+  qlq2) a lau , .  
Another remarkable example is that of a Lagrangian of mechanical type in which 

the configuration space is R". The Lagrangian is given by L(x ,  U )  = ;g(v,  U )  - V ( x ) ,  
but the quadratic form g defining the kinetic energy is assumed to be degenerate. In 
this case the presymplectic form wL is written as w L  = dxk A dv' and therefore Ker wL 
is 2r-dimensional, r being the corank of the quadratic form g, i.e. it is made up by 
vector fields r = a i  a/axi+ bJ a/&, with a and b in the kernel of g. Furthermore, 
Ker wL is r-dimensional and therefore there will be a SODE r that satisfies the dynamical 
equation on the final constraint submanifold. 

Time-dependent Lagrangian systems can also be considered as constrained systems 
when the homogeneous formalism is used. Given a time-dependent Lagrangian 
L(q,  v, t )  the corresponding homogeneous Lagrangian 2' is defined on the tangent 
bundle T (  Q x R) of the space of events Q x R as follows: 2'( q, t ; U, w )  = L( q, U /  w, t ) .  
The energy function ET vanishes identically as a consequence of the homogeneity of 
2' in the velocities. If L,: TQ + R, given by L,( q, U )  = L(q, U, t ) ,  is regular for any t E R, 
it is easy to check that Ker wT is two-dimensional while Ker wT n V (  TQ) is one- 
dimensional: a generator is the Liouville field & in T ( Q  xR), i.e. & = U' a /au '+  w slaw. 
As a result of theorem 3 we know that there are SODES satisfying the dynamical 
equation i (T)o2=OO, two of such SODE differing in an element of Ker w y n  V (  TQ). 
The dynamics is determined by considering on the hypersurface w = 1 (in which the 
parameter of the integral curves of vector fields on T (  Q X R )  coincides with the time) 
the uniquely defined SODE in Ker wT that is tangent to the hypersurface w = 1. In fact, 
the expression in coordinates of the equations determining the integral curves of such 
a vector field are the EL equations for the Langrangian L. It is noteworthy that if two 
time-dependent Lagrangians L1 and L2 (such that Li,: TQ + R is a regular function for 
any t )  have associated homogeneous Lagrangians that are equivalent according to the 
definition given in § 2 for singular Lagrangians, they will rise to the same vector field 
if the above method is developed and it supports the definition we have given for 
equivalence of singular Lagrangians. 

6. Final remarks 

After a quick review of the theory of the equivalence of regular Lagrangians from a 
geometric point of view, we have proposed a concept for equivalence of singular 
Lagrangians, a concept that, as far as we know, had not been proposed, probably 
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because the set of solutions for the EL equations used for defining equivalence of 
regular Lagrangians is not well defined when L is singular. The equivalence relation 
we have introduced makes use of the primary constraint submanifold (this is the reason 
for the adjective ‘primary’ in the definition of equivalence) and a slight modification 
of this relation will fit better to the concept of physical equivalence: two singular 
Lagrangians are equivalent if they give rise to the same final constraint submanifold 
C and every solution of the dynamical equation on C, (i(wL,)I‘)lc =dEL,,=, is too a 
solution of the dynamical equation for L,. 

The (pre)symplectic form oL defined by the Lagrangian L is an auxiliary tool in 
the framework of classical mechanics but it plays a distinguished role when trying to 
do the corresponding quantum description of the system. Then in order to have 
equivalent quantum systems not only the dynamical vector fields but the forms wL 
must coincide. This is the problem we have analysed in 0 4 in which we have established 
that if there exists a SODE satisfying the dynamical equation on the final constraint 
submanifold the above-mentioned equivalence of Lagrangians as giving the same 
presymplectic system is but the well known gauge equivalence (LCvy-Leblond 1969), 
just as in the regular case. In the general case however, the gauge-equivalence relation 
seems to be better than primary plus geometric equivalence. 

We have also given a theorem showing the existence of such a SODE in a particular 
situation, as well as some examples in which the theorem works: the homogeneous 
formalism for time-dependent systems is one of them and the concept of equivalence 
we have proposed reduces to the standard concept of ‘giving the same set of solutions 
of the Euler-Lagrange equations’ when the Lagrangians are assumed to be regular for 
any time t. 
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